自引入GPT技术以来,云起无垠逐步深入研究GPT相关内容。诚然,传统的使用文本向量相似度索引方式存在着较大的局限性。为了寻找更优解,我们开始尝试自主训练或微调GPT模型,并进行了诸多的尝试,本文介绍的实验目标是构建一个本地化的GPT学习研究系统,使其可以顺利运行并为我们提供实验环境。
GPT的发展史
-
2018年 GPT1发布,作者用5G的书籍文本做无监督学习预训练,架构为12层transformer,每层12个注意头,模型参数约1.17亿,使用生成的预训练模型再到微调运用到各类nlp任务。
-
2019年GPT2发布,对gpt1架构改动了一下,使用40GB文本,包含web爬虫数据,redit等数据,模型参数达到15亿。
-
提出了不修改预训练模型的情况下,使用0样本或少样本学习,完成任务
-
2020年GPT3发布
-
和GPT2的区别就是将数据和模型都扩大了100倍,暴力出奇迹。使用45T文本,参数量达到1750亿,效果炸裂。
-
in-context learning
-
GPT3.5
-
训练奖励模型,让模型更偏向人类的思考方式
-
使用监督微调的方式,提供大量人类对话的例子,让机器模仿人类
-
GPT3很强大,但机器只是试图完成文章,并不是“助手”
-
SFT supervised fine-tuning
-
RLHF align human
-
GPT4
-
多模态混合模型
-
GPT-4每个head都有2200亿参数,是一个8路的混合模型,总参数达到1.6万亿
-
在GPT4论文有一个有意思的点,因为每次训练都相当于黑盒,训练的代价又过于昂贵,担心loss不下降,所以GPT4先训练了一个参数低100倍的小模型,基于这个模型用机器学习预测了GPT4模型量的loss值。
GPT是为了解决广泛的nlp的任务所以才会在数据集和模型参数上不断加倍,如果只是对一个垂直领域数据做问答和推理,是否可以用一个小模型达到效果。
数据收集
小模型整个训练都是在Google colab上完成,免费提供的显存大小只有16G,实际可用在13~15之间,后面很多地方受限于显存大小,所以有些地方实现会非常简单,后面会说到。
在数据的收集上,先进行一遍无监督学习,选取了seebug paper和一个poc仓库
-
https://github.com/Threekiii/Awesome-POC
-
https://paper.seebug.org/
这只是一个简单的测试,跑通后后面自然可以增大数据集
每个文章按1024大小进行分割,保存到json文件中,最后数据大小有31M。
Ps:按块分割会造成很多信息不完整,数据收集这块还是需要清洗后效果会更好。
数据处理
模型只是对数字进行计算,所以需要将文本转换为文本向量,这里简单的做法是将训练集中每个字提取出来生成一个字表,字表的索引号就是该文本的向量。
最后生成的大小有4214。
Ps:这是简单的做法,GPT的做法是使用 BPE(Byte Pair Encoding)算法处理,最后词表有5w大小,词表和显存占用是线性关系所以用这个简单的方法跑了。
数据集加载类
对每篇文章mask最后一个字用作预测,计算loss用mask第一个字的文本,gpt架构的神奇之处在于此,它只是预测最后一个字,而预测的这个字是根据学习文本的概率计算的。
# 定义数据集
class MyDataSet(Data.Dataset):
def __init__(self, datas):
self.datas = datas
def __getitem__(self, item):
data_item = self.datas[item]
decoder_input = data_item[:-1]
decoder_output = data_item[1:]
return {"decoder_input": decoder_input,
"decoder_output": decoder_output}
def padding_batch(self, batch): #
for d in batch: # 对当前batch的每一个decoder_input和decoder_output数据填充"<pad>",填充到和batch里面的有的最大长度为止
input_len = len(d["decoder_input"])
output_len = len(d["decoder_output"])
d["decoder_input"].extend([special_char_pad] * (max_pos - input_len))
d["decoder_output"].extend([special_char_pad] * (max_pos - output_len))
decoder_inputs = torch.tensor([d["decoder_input"] for d in batch], dtype=torch.long) # 转type
decoder_outputs = torch.tensor([d["decoder_output"] for d in batch], dtype=torch.long)
return decoder_inputs, decoder_outputs # 形状[b,decoder_input_maxlen], [b,decoder_output_maxlen] type为torch.long
def __len__(self):
return len(self.datas)
训练超参数
这里简单训练一个6层 8个注意头的模型。
max_pos = 1024 # 一段话最多字
d_model = 768 # Embedding Size
d_ff = 2048 # FeedForward dimension
d_k = d_v = 64 # dimension of K(=Q), V
n_layers = 6 # number of Encoder of Decoder Layer
n_heads = 8 # number of heads in Multi-Head Attention
参数量在36M,及3600万的小模型,显存占用在11G左右,再大显存就不够了
模型层
模型使用是GPT2的结构
GPT(
(decoder): Decoder(
(tgt_emb): Embedding(6110, 768)
(pos_emb): Embedding(1024, 768)
(layers): ModuleList(
(0-5): 6 x DecoderLayer(
(dec_self_attn): MultiHeadAttention(
(W_Q): Linear(in_features=768, out_features=512, bias=False)
(W_K): Linear(in_features=768, out_features=512, bias=False)
(W_V): Linear(in_features=768, out_features=512, bias=False)
(fc): Linear(in_features=512, out_features=768, bias=False)
(layernorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)
(pos_ffn): PoswiseFeedForwardNet(
(fc): Sequential(
(0): Linear(in_features=768, out_features=2048, bias=False)
(1): ReLU()
(2): Linear(in_features=2048, out_features=768, bias=False)
)
(layernorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)
)
)
)
(projection): Linear(in_features=768, out_features=6110, bias=True)
)
模型代码
# 把数据里面<pad>对应的字符给mask掉,让后面Q和K相似度矩阵的softmax中这些pad都为0,就不会被后续的V考虑
def get_attn_pad_mask(seq_q, seq_k): # 形状都是[b, tgt_len <300]
batch_size, len_q = seq_q.size() # len_q = len_k = tgt_len
batch_size, len_k = seq_k.size()
# eq(zero) is PAD token.就是把数据里面<pad>对应的字符给mask掉,让后面Q和K的softmax不考虑这些<pad>
pad_attn_mask = seq_k.data.eq(0).unsqueeze(
1) # [b, 1, tgt_len], id为0(也就是<pad>的id)的位置为True,其他位置为False。后面会把Ture位置的mask掉
return pad_attn_mask.expand(batch_size, len_q, len_k) # [b, tgt_len, tgt_len]
def get_attn_subsequence_mask(seq): # seq: [b, tgt_len]
attn_shape = [seq.size(0), seq.size(1), seq.size(1)] # [b, tgt_len, tgt_len]
subsequence_mask = np.triu(np.ones(attn_shape), k=1) # Upper triangular matrix(上三角矩阵)
subsequence_mask = torch.from_numpy(subsequence_mask).byte()
subsequence_mask = subsequence_mask.to(device)
return subsequence_mask # [b, tgt_len, tgt_len] 上三角矩阵,下0上1,dtype=torch.uint8
class ScaledDotProductAttention(nn.Module): # 计算Q和K的相似度矩阵,然后乘V。对应笔记里的图
def __init__(self):
super(ScaledDotProductAttention, self).__init__()
def forward(self, Q, K, V,
attn_mask): # 前三者形状相同[b, n_heads, tgt_len, d_k=64],attn_mask:[b, n_heads, tgt_len, tgt_len]
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # Q和K的相似度矩阵scores : [b, n_heads, tgt_len, tgt_len]
scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is True.
# 就是scores矩阵里面和attn_mask=1对应位置的元素全部替换成-1e9,使其在下一步的softmax中变为0
attn = nn.Softmax(dim=-1)(scores) # [b, n_heads, tgt_len, tgt_len]
context = torch.matmul(attn, V) # [b, n_heads, tgt_len, d_v]
return context, attn
class MultiHeadAttention(nn.Module): # 多头注意力机制
def __init__(self):
super(MultiHeadAttention, self).__init__()
self.W_Q = nn.Linear(d_model, d_k * n_heads, bias=False) # d_model=768 , d_v = d_k = 64 , n_heads=8
self.W_K = nn.Linear(d_model, d_k * n_heads, bias=False)
self.W_V = nn.Linear(d_model, d_v * n_heads, bias=False)
self.fc = nn.Linear(n_heads * d_v, d_model, bias=False)
self.layernorm = nn.LayerNorm(d_model)
def forward(self, input_Q, input_K, input_V,
attn_mask): # 前三者形状相同,都是[b, tgt_len, d_model] , attn_mask: [b, tgt_len, tgt_len]
residual, batch_size = input_Q, input_Q.size(0) #
# [b, tgt_len, d_model] --> [b, tgt_len, d_k * n_heads] -split-> (b, tgt_len, n_heads, d_k) -trans-> (b, n_heads, tgt_len, d_k)
Q = self.W_Q(input_Q).view(batch_size, -1, n_heads, d_k).transpose(1, 2) # Q: [b, n_heads, tgt_len, d_k=64]
K = self.W_K(input_K).view(batch_size, -1, n_heads, d_k).transpose(1, 2) # K: [b, n_heads, tgt_len, d_k=64]
V = self.W_V(input_V).view(batch_size, -1, n_heads, d_v).transpose(1, 2) # V: [b, n_heads, tgt_len, d_v=64]
attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1,
1) # 添加n_heads维度并复制。attn_mask : [b, n_heads, tgt_len, tgt_len]
context, attn = ScaledDotProductAttention()(Q, K, V, attn_mask) # 参考图解,context形状[b, n_heads, tgt_len, d_v]
context = context.transpose(1, 2).reshape(batch_size, -1, n_heads * d_v) # context: [b, tgt_len, n_heads * d_v]
output = self.fc(context) # [batch_size, tgt_len, d_model]
return self.layernorm(output + residual), attn
class PoswiseFeedForwardNet(nn.Module): # [b,tgt_len,d_model] -> [b,tgt_len,d_model] 输入和输出形状不变
def __init__(self):
super(PoswiseFeedForwardNet, self).__init__()
self.fc = nn.Sequential(
nn.Linear(d_model, d_ff, bias=False),
nn.ReLU(),
nn.Linear(d_ff, d_model, bias=False)
)
self.layernorm = nn.LayerNorm(d_model)
def forward(self, inputs):
'''
inputs: [batch_size, seq_len, d_model]
'''
residual = inputs
output = self.fc(inputs)
return self.layernorm(output + residual) # [batch_size, seq_len, d_model]
class DecoderLayer(nn.Module):
def __init__(self):
super(DecoderLayer, self).__init__()
self.dec_self_attn = MultiHeadAttention() # 多头注意力
# self.dec_enc_attn = MultiHeadAttention()
self.pos_ffn = PoswiseFeedForwardNet()
def forward(self, dec_inputs,
dec_self_attn_mask): # dec_inputs: [b, tgt_len, d_model] dec_self_attn_mask: [b, tgt_len, tgt_len]
# dec_outputs: [b, tgt_len, d_model], dec_self_attn: [b, n_heads, tgt_len, tgt_len]
dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)
dec_outputs = self.pos_ffn(dec_outputs) # [b, tgt_len, d_model]
return dec_outputs, dec_self_attn # [b, tgt_len, d_model] , [b, n_heads, tgt_len, tgt_len]
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
self.tgt_emb = nn.Embedding(vocab_size,
d_model) # 以矩阵形式抽取一行,会比直接用mlp高效。因为mlp会多很多无用运算 emb矩阵形状(vocab_size,768)
self.pos_emb = nn.Embedding(max_pos, d_model) # 可学习的位置编码 emb矩阵形状(300,768)
self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)])
def forward(self, dec_inputs): # 输入dec_inputs形状[b,tgt_len]
seq_len = dec_inputs.size(1) # tgt_len ,表示batch内最大长度,不会超过300
pos = torch.arange(seq_len, dtype=torch.long, device=device) # 给位编码准备的值,[0,1,2,3,...,seq_len-1]
pos = pos.unsqueeze(0).expand_as(dec_inputs) # [tgt_len] -> [b, tgt_len]
dec_outputs = self.tgt_emb(dec_inputs) + self.pos_emb(pos) # [b, tgt_len, d_model=768]
dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs) # [b, tgt_len, tgt_len] 把<pad>给mask掉
dec_self_attn_subsequence_mask = get_attn_subsequence_mask(dec_inputs) # [b, tgt_len, tgt_len] 上三角矩阵
dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequence_mask),
0) # [b, tgt_len, tgt_len] 矩阵大于0的全为1,否则为0
dec_self_attns = []
for layer in self.layers:
# dec_outputs: [b, tgt_len, d_model], dec_self_attn: [b, n_heads, tgt_len, tgt_len], dec_enc_attn: [b, h_heads, tgt_len, src_len]
dec_outputs, dec_self_attn = layer(dec_outputs, dec_self_attn_mask)
dec_self_attns.append(dec_self_attn)
return dec_outputs, dec_self_attns
class GPT(nn.Module):
def __init__(self):
super(GPT, self).__init__()
self.decoder = Decoder()
self.projection = nn.Linear(d_model, vocab_size) # 768->vocab_size,也就是把最后的隐藏层节点768投影到字典个数的节点上
def forward(self, dec_inputs): # 输入dec_inputs形状[b,tgt_len] tgt_len<=300 (tgt_len是batch内最大长度)
dec_outputs, dec_self_attns = self.decoder(
dec_inputs) # dec_outpus: [b, tgt_len, d_model=768], dec_self_attns: [n_layers, b, n_heads, tgt_len, tgt_len]
dec_logits = self.projection(dec_outputs) # dec_logits: [b, tgt_len, vocab_size]
return dec_logits.view(-1, dec_logits.size(-1)), dec_self_attns # 左边那个输出形状[b *tgt_len,vocab_size]
@torch.no_grad()
def generate(self, sentence, max_new_tokens, temperature=1.0, top_k=None):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
"""
idx = torch.tensor(encoder(sentence), dtype=torch.long, device=device).unsqueeze(
0) # [n] -> [1,n] 转type,并放入指定设备
for _ in range(max_new_tokens):
# forward the model to get the logits for the index in the sequence
dec_outputs, _ = self.decoder(idx)
logits = self.projection(dec_outputs) # [1, tgt_len, vocab_size]
# pluck the logits at the final step and scale by desired temperature
logits = logits[:, -1, :] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
vv, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < vv[:, [-1]]] = -float('Inf')
# apply softmax to convert logits to (normalized) probabilities
probs = F.softmax(logits, dim=-1)
# sample from the distribution
# idx_next = torch.multinomial(probs, num_samples=1)
idx_next = torch.max(probs, dim=-1, keepdim=True)[1]
# append sampled index to the running sequence and continue
if idx_next.item() == special_char_sep:
break
idx = torch.cat(
[idx.detach(), idx_next], -1)
yield vocab_data_reverse[idx_next.item()]
训练
训练时额外的超参数
batch_size = 16 # 一次训练多少个文本
epochs = 20 # 训练几轮
lr = 1e-4 # 学习率
训练代码
# 模型的训练
import glob
import math
import time
from torch import optim
from tqdm import tqdm
def epoch_time(start_time, end_time): # 把秒数表示为分钟和秒
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
def train_step(model, data_loader, optimizer, criterion, clip=1, print_every=None): # 每一个eopch的训练
model.train() # 训练模式
if print_every == 0:
print_every = 1
print_loss_total = 0 # 每次打印都重置,统计一定batch数内(默认10)的loss,每10个batch打印一次
epoch_loss = 0 # epoch的总loss
for i, (dec_inputs, dec_outputs) in enumerate(
tqdm(data_loader)): # dec_inputs: [b, tgt_len] , dec_outputs: [b, tgt_len]
optimizer.zero_grad()
dec_inputs, dec_outputs = dec_inputs.to(device), dec_outputs.to(device)
# outputs: [batch_size * tgt_len, tgt_vocab_size] tgt_len<=30
# with torch.cuda.amp.autocast(): # 半精度训练
outputs, dec_self_attns = model(dec_inputs)
loss = criterion(outputs, dec_outputs.view(
-1)) # outputs :(b * tgt_len, vocab_size),dec_outputs.view(-1) :(b * tgt_len) tgt_len<=300
print_loss_total += loss.item()
epoch_loss += loss.item()
loss.backward() # 梯度反向传播
# 梯度裁剪,防止梯度爆炸。如果loss超过clip,将梯度值缩小为原来的(loss/clip)分之一
torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
optimizer.step() # 更新模型权重
if print_every and (i + 1) % print_every == 0:
print_loss_avg = print_loss_total / print_every
print_loss_total = 0
print('tCurrent Loss: %.4f' % print_loss_avg)
return epoch_loss / len(data_loader)
def train(model, data_loader, lr):
criterion = nn.CrossEntropyLoss(ignore_index=0).to(device) # 损失函数
optimizer = optim.AdamW(model.parameters(), lr=lr) # 优化器
for epoch in range(epochs):
start_time = time.time()
train_loss = train_step(model, data_loader, optimizer, criterion, CLIP, print_every=100) # 训练一个epoch
end_time = time.time()
torch.save(model.state_dict(), r'model/GPT-%d.pt' % epoch) # 保存模型权重
epoch_mins, epoch_secs = epoch_time(start_time, end_time) # 把秒数表示为分钟和秒
print(f'Epoch: {epoch + 1:02} | Time: {epoch_mins}m {epoch_secs}s')
print(f'tTrain Loss: {train_loss:.3f}')
def print_num_parameters(model):
# Find total parameters and trainable parameters
total_params = sum(p.numel() for p in model.parameters())
print("number of parameters: %.2fM" % (total_params / 1e6,))
total_trainable_params = sum(
p.numel() for p in model.parameters() if p.requires_grad)
print("train of parameters: %.2fM" % (total_trainable_params / 1e6))
def split_array(array, num):
length = len(array)
chunk_size = math.ceil(length / num)
result = []
for i in range(0, chunk_size):
result.append(array[:num])
array = array[num:]
return result
def get_dataset_from_mk(folder):
dataset = []
for filename in glob.glob(folder + "*.md"):
with open(filename) as f:
data = f.read()
array_ = split_array(encoder(data), max_pos)
dataset.extend(array_)
return dataset
def get_dataset_from_json(filename):
with open(filename) as f:
data = json.load(f)
dataset = []
for item in data:
dataset.append(encoder(item))
return dataset
if __name__ == '__main__':
batch_size = 16
epochs = 10
shuffle = True
lr = 1e-4
filename = "data.json"
dataset = get_dataset_from_json(filename)
data_set = MyDataSet(dataset)
data_loader = Data.DataLoader(data_set,
batch_size=batch_size,
collate_fn=data_set.padding_batch,
shuffle=shuffle) # 对每个batch单独调用collate_fn处理,因为batch内的句子长短不一,不能直接用torch的默认方法
model = GPT().to(device)
print_num_parameters(model)
train(model, data_loader, lr)
可以看到模型的参数大概是36M,在colab 使用T4训练,一个Epoch在37分钟。在训练了三轮后停了,loss在1.8。
资源消耗
测试推理
epoch跑了三轮后
epoch跑了18轮后,loss降低到了0.9,在本地测试,随机跑6个结果
语句不那么通顺,还是有点胡言乱语。这和很多因素有关,有可能作为训练的文本太少,机器还没喂饱。不过它的优点是能在家用CPU推理,速度很快。
总结
这次实验只是跑通了代码,对效果还没有调优,针对垂直领域的语言模型,应该还是需要在大的通用语言文本上训练一次,理解世界,然后再针对垂直领域的数据继续finetuning。如果这个猜想能成立的话,它就能在家用CPU上推理,成本大幅降低。
实验到这里还引出了一个问题,不同参数的模型,训练文本的极限是多少,小参数的模型能达到多少水平,这还需要一些算力做实验,请见下篇文章。
招聘
如果你也对ai和安全感兴趣,想做相关方面的研究,可以加入我们。
「云起无垠」
-
国内新一代Fuzzing全流程赋能开发安全-DevSecOps解决方案供应商,基于智能模糊测试引擎为协议、数据库、API、APP、Web3.0等应用提供强大的软件安全自动化分析能力,从源头助力企业自动化检测与修复业务系统安全问题,为每行代码的正常运行保驾护航。让软件更安全,让安全更智能。
职位:AI与网络安全研究员 工作类型:全职/实习
职责:
-
深入研究网络安全与人工智能相结合的最新领域,为公司产品和服务提供创新的解决方案。
-
开发、测试和维护安全工具,用于检测和预防潜在的安全威胁。
-
与跨部门团队紧密合作,共同推动ai与安全最佳实践。
要求:
-
熟悉Python、Go、C/C++等编程语言中的至少一个,能够灵活运用进行开发和调试。
-
具备扎实的Web安全和二进制基础知识,熟悉常见的安全漏洞和攻击技术。
-
具备良好的问题解决能力和逻辑思维能力,能够分析和归纳复杂的安全问题。
-
具备卓越的团队合作和沟通能力,能够与不同背景的团队成员高效协作。
-
具备自我驱动力和持续学习的能力,对新兴安全技术保持敏锐的兴趣。
薪资范围(全职):20~40k*16薪
简历发送邮箱:[email protected]
更多阅读
原文始发于微信公众号(云起无垠):从0实现网络安全“小”模型