原文始发于Artyom Semenov、HEGO:Garak – A Generative AI Red-teaming Tool
Exploring “Red Teaming” for LLMs, we combine technical insights and real-world scout experience to enhance cyber defenses against new vulnerabilities.
探索“红队”LLMs,我们将技术见解和实际侦察经验相结合,以增强针对新漏洞的网络防御。
Introduction 介绍
Welcome, enthusiasts of practical ML security! Today, we embark on an exploration of the practical security concerns surrounding language models, culminating in a concise article on this intriguing subject. So, settle in, brew yourself a cup of tea, and let’s delve into the depths.
欢迎,实用ML安全的爱好者!今天,我们开始探索围绕语言模型的实际安全问题,最终以一篇关于这个有趣主题的简明文章结束。所以,安顿下来,给自己泡一杯茶,让我们深入研究。
Navigating the Language Model Ecosystem: Embracing Red Teaming
驾驭语言模型生态系统:拥抱红队
In this article, we plunge into the realm of “Red Teaming” for Large Language Models (LLMs), an avant-garde strategy aimed at uncovering vulnerabilities within these formidable systems. Our journey is enriched by the insights of a seasoned scout, melding technical expertise with practical wisdom. Our mission? To bolster our digital defenses against emerging threats.
在本文中,我们将深入探讨大型语言模型的“红队”(LLMsRed Teaming)领域,这是一种前卫的策略,旨在发现这些强大系统中的漏洞。经验丰富的球探的见解丰富了我们的旅程,将技术专长与实践智慧融为一体。我们的使命是什么?加强我们的数字防御,抵御新出现的威胁。
Despite the pervasive utilization of LLMs in contemporary digital products, there persists a widespread lack of awareness regarding the security risks they entail. From prompt injections to more insidious threats, these vulnerabilities loom large, often obscured by the dearth of comprehensive guides on threat identification and mitigation.
尽管在当代数字产品中得到了普遍的使用LLMs,但人们仍然普遍缺乏对其带来的安全风险的认识。从及时注入到更阴险的威胁,这些漏洞隐约可见,往往因缺乏关于威胁识别和缓解的综合指南而变得模糊不清。
As the digital landscape burgeons, so does the integration of LLMs across diverse applications. Yet, beneath the veneer of innovation, security frailties endure, necessitating the quest for robust solutions. Our foray into Red Teaming offers a proactive trajectory, ensuring that we remain a step ahead in the digital security paradigm.
随着数字环境的不断发展,各种应用程序的LLMs集成也在不断发展。然而,在创新的外表下,安全漏洞仍然存在,因此需要寻求强大的解决方案。我们进军红队提供了一个积极主动的轨迹,确保我们在数字安全范式中保持领先一步。
The Evolution of Language Models: From Static to Dynamic
语言模型的演变:从静态到动态
The evolution of language models (LMs) traces a captivating trajectory marked by substantial advancements over the years. This odyssey commences with the advent of static language models in the 1990s. These models, epitomized by Statistical Language Models (SLMs), leverage statistical methodologies to construct word prediction models. Operating under the Markovian assumption, they forecast the subsequent word based on the preceding context. Notable examples within this category include N-gram language models, encompassing bigram and trigram models.
语言模型 (LM) 的演变描绘了一条引人入胜的轨迹,其特点是多年来取得了长足的进步。这场冒险始于 1990 年代静态语言模型的出现。这些模型以统计语言模型 (SLM) 为代表,利用统计方法来构建单词预测模型。在马尔可夫假设下,他们根据前面的上下文预测下一个单词。此类别中值得注意的示例包括 N-gram 语言模型,包括 bigram 和 trigram 模型。
Fifteen years later, Neural Language Models (NLMs) emerged, heralding a paradigm shift in the domain. NLMs harness neural networks, including Multilayer Perceptrons (MLPs) and Recurrent Neural Networks (RNNs), to estimate the probability of word sequences. Despite their groundbreaking nature, NLMs encounter several challenges:
十五年后,神经语言模型(NLM)出现,预示着该领域的范式转变。NLM 利用神经网络,包括多层感知器 (MLP) 和递归神经网络 (RNN) 来估计词序列的概率。尽管 NLM 具有开创性,但仍会遇到一些挑战:
-
Data Manipulation: Biases or errors within the training data can profoundly influence the model’s outputs.
数据操作:训练数据中的偏差或错误会深刻影响模型的输出。 -
Interference: These models are susceptible to attacks that introduce specific data sequences to manipulate their predictions.
干扰:这些模型容易受到引入特定数据序列来操纵其预测的攻击。 -
Limited Understanding: Like SLMs, NLMs rely on statistical analysis and word frequencies, potentially leading to misinterpretations, particularly with ambiguous or rare words.
理解有限:与 SLM 一样,NLM 依赖于统计分析和词频,这可能会导致误解,尤其是对模棱两可或未僻的单词。
A comprehensive comprehension of these challenges is imperative for the continual enhancement of more resilient and precise language models.
全面理解这些挑战对于不断增强更具弹性和精确的语言模型至关重要。
-
Expensive training: Training NLMs can require significant computational resources, making them vulnerable to cyberattacks on infrastructure.
昂贵的培训:培训 NLM 可能需要大量的计算资源,使其容易受到基础设施的网络攻击。 -
Data bias: Similar to SLMs, they can reproduce biases from training datasets.
数据偏差:与 SLM 类似,它们可以重现训练数据集中的偏差。 -
Adaptation attacks: Attackers can use knowledge of model performance to create inputs that will cause the model to act unreliably or reveal sensitive information. The 2010s saw the emergence of pre-trained language models (PLMs) such as ELMo, which focus on capturing context-dependent word representations . BERT, based on the Transformer architecture, pre-trains bidirectional language models using specially designed tasks on large unlabeled corpora, providing efficient context-dependent word representations for a variety of natural language processing tasks .
适应攻击:攻击者可以利用模型性能知识创建输入,这些输入将导致模型运行不可靠或泄露敏感信息。2010 年代出现了预训练语言模型 (PLM),例如 ELMo,它专注于捕获与上下文相关的单词表示。BERT 基于 Transformer 架构,在大型未标记语料库上使用专门设计的任务预训练双向语言模型,为各种自然语言处理任务提供高效的上下文相关词表示。 -
Ethical Risks: Biases in the data may lead to discrimination against certain groups of people in text generation.
道德风险:数据中的偏见可能导致在文本生成中对某些人群的歧视。 -
Liability issues: Determining responsibility for harmful inferences can be difficult if the models are biased.
责任问题:如果模型有偏见,则很难确定有害推论的责任。
The evolution of language models has reached new heights with the advent of Large Language Models (LLMs) like GPT-4 and PaLM. These models stand out for their training on vast text corpora, empowering them with remarkable capabilities such as Instructional Tuning (IT), In-Context Learning (ICL), and Coherent Train of Thought (CoT).
随着 GPT-4 和 PaLM 等大型语言模型 (LLMs) 的出现,语言模型的发展达到了新的高度。这些模型因其在大量文本语料库上的训练而脱颖而出,赋予它们卓越的能力,例如教学调整 (IT)、上下文学习 (ICL) 和连贯思路 (CoT)。
This advancement represents a significant “boom” in the field, laying the groundwork for the technological landscape and innovative strides we witness today.
这一进步代表了该领域的重大“繁荣”,为我们今天见证的技术格局和创新进步奠定了基础。
LLM + Red Team = LLM Red Teaming
LLM + 红队 = LLM 红队
In the realm of Information Security (IS), the roles of Blue and Red Teams are well-defined. However, how does this dynamic translate when utilizing Large Language Models (LLMs)?
在信息安全 (IS) 领域,蓝队和红队的角色是明确的。但是,在使用大型语言模型 (LLMs) 时,这种动态是如何转换的?
According to Microsoft: 根据Microsoft:
“Red Teaming” is a recommended practice for responsibly designing systems and functionalities utilizing LLMs. While not a substitute for systematic risk assessment and mitigation efforts, red teams play a crucial role in identifying and delineating potential harm. This, in turn, facilitates the development of measurement strategies to validate the efficacy of risk mitigation measures.
“红队”是负责任地设计系统和功能的LLMs推荐做法。虽然不能替代系统的风险评估和缓解工作,但红队在识别和描述潜在危害方面发挥着至关重要的作用。这反过来又有助于制定衡量策略,以验证风险缓解措施的有效性。
While a traditional red team comprises individuals tasked with identifying risks, in the context of LLMs, these risks are often predefined. Presently, we have the OWASP Top 10 LLMs, which catalog threats such as Prompt Injection, Supply Chain attacks, and more. OWASP is currently in the process of preparing an updated version of its top threats list.
虽然传统的红队由负责识别风险的个人组成,但在上下文LLMs中,这些风险通常是预先定义的。目前,我们有 OWASP 前 10 名 LLMs,它对提示注入、供应链攻击等威胁进行了分类。OWASP目前正在准备其主要威胁列表的更新版本。
Garak – 生成式 AI Red-teaming & Assessment Kit
Garak is an open-source framework designed to identify vulnerabilities in Large Language Models (LLMs). Unique in its approach, it draws its name from the distinct character, Elim Garak. Entirely written in Python, Garak has fostered a community over time.
Garak 是一个开源框架,旨在识别大型语言模型 (LLMs) 中的漏洞。它的独特之处在于它的名字来源于独特的角色 Elim Garak。Garak 完全用 Python 编写,随着时间的推移,它已经建立了一个社区。
Today, we’ll delve into the practical functionality of Garak, an AI security tool scanner. Along the way, we’ll explore its architecture and enumerate its extensive list of benefits.
今天,我们将深入探讨 Garak 的实际功能,这是一款 AI 安全工具扫描仪。在此过程中,我们将探索其架构并列举其广泛的优势列表。
To begin, let’s initiate the installation process on our work machine. While we’ll demonstrate the installation on Kali Linux, it’s important to note that Garak is compatible with various distributions and operating systems.
首先,让我们在工作机器上启动安装过程。虽然我们将演示在 Kali Linux 上的安装,但重要的是要注意 Garak 与各种发行版和操作系统兼容。
In terms of technical specifications, it’s essential to highlight that Garak is resource-intensive. Adequate hardware, particularly GPUs capable of efficiently handling PyTorch operations, is paramount. A GPU with a minimum capability of at least a GTX 1080 is recommended.
在技术规格方面,必须强调 Garak 是资源密集型的。足够的硬件,特别是能够有效处理 PyTorch 操作的 GPU,至关重要。建议使用至少具有 GTX 1080 最低功能的 GPU。
Our installation process commences with the creation of a Conda environment. You might wonder why not simply use ‘pip install garak’? The rationale behind opting for Conda lies in our future requirement to work directly with the source code. This affords us continuous access and facilitates seamless rollbacks, a critical aspect of our workflow. Additionally, this approach mitigates potential dependency conflicts within the Kali environment.
我们的安装过程从创建 Conda 环境开始。您可能想知道为什么不简单地使用“pip install garak”?选择 Conda 的理由在于我们未来需要直接使用源代码。这为我们提供了持续的访问并促进了无缝回滚,这是我们工作流程的一个关键方面。此外,此方法还缓解了 Kali 环境中潜在的依赖关系冲突。
Follow these steps to install Miniconda from the official website:
按照以下步骤从官方网站安装Miniconda:
-
Visit the Miniconda official website at https://docs.conda.io/en/latest/miniconda.html.
访问 Miniconda 官方网站 https://docs.conda.io/en/latest/miniconda.html. -
Choose the installer appropriate for your operating system (Windows, macOS, or Linux).
选择适合您的操作系统(Windows、macOS 或 Linux)的安装程序。 -
Download the installer. 下载安装程序。
-
For Windows, run the downloaded
.exe
file and follow the on-screen instructions.
对于 Windows,运行下载.exe
的文件并按照屏幕上的说明进行操作。For macOS and Linux: 对于 macOS 和 Linux:
-
Open a terminal. 打开终端。
-
Navigate to the folder containing the downloaded file.
导航到包含下载文件的文件夹。 -
Run the installer by typing
bash Miniconda3-latest-MacOSX-x86_64.sh
for macOS orbash Miniconda3-latest-Linux-x86_64.sh
for Linux, then pressEnter
.
键入bash Miniconda3-latest-MacOSX-x86_64.sh
macOS 或bash Miniconda3-latest-Linux-x86_64.sh
Linux 键来运行安装程序,然后按Enter
。 -
Follow the on-screen instructions.
按照屏幕上的说明进行操作。
-
-
To verify the installation, open a terminal or command prompt and type
conda list
. If Miniconda was installed successfully, you will see a list of installed packages.
若要验证安装,请打开终端或命令提示符,然后键入conda list
。如果 Miniconda 安装成功,您将看到已安装软件包的列表。
Remember to consult the Miniconda documentation for more detailed instructions or troubleshooting.
请记住查阅 Miniconda 文档以获取更详细的说明或故障排除。
After installing, activate the Conda shell.
安装后,激活 Conda shell。
Next, we create a Conda environment, clone the repository, and then install the dependencies:
接下来,我们创建一个 Conda 环境,克隆存储库,然后安装依赖项:
To install dependencies and set up the Garak environment, follow these steps:
若要安装依赖项并设置 Garak 环境,请按照下列步骤操作:
-
Install required packages from
requirements.txt
:
从以下位置requirements.txt
安装所需的软件包: -
Clone the Garak repository:
克隆 Garak 存储库: -
Change directory to
garak
:
将目录更改为garak
: -
Activate the Garak Conda environment:
激活 Garak Conda 环境:
Agree to the installation prompts that appear during the process.
同意在此过程中出现的安装提示。
Dependencies have been installed, and now we can proceed to run the application. The developer’s website clearly states that Garak operates stably on Python 3.9. Attempting to install it on Python 3.8 may cause a Traceback error, indicating that some functions are not operating correctly. Therefore, we will adhere to the developer’s specifications. The entire installation process of the framework took approximately 10 minutes.
依赖项已经安装完毕,现在我们可以继续运行应用程序了。开发者的网站明确指出,Garak 在 Python 3.9 上稳定运行。尝试在 Python 3.8 上安装它可能会导致 Traceback 错误,表明某些功能无法正常运行。因此,我们将遵守开发人员的规范。框架的整个安装过程大约需要 10 分钟。
Great, now we have to figure out how to work with it. There’s a wide range of functions that can help us with testing.
太好了,现在我们必须弄清楚如何使用它。有各种各样的功能可以帮助我们进行测试。
For example, the -model_type
option allows you to select models from model hubs.
例如,该 -model_type
选项允许您从模型中心选择模型。
-
HuggingFace 拥抱脸
-
Replicate 复制
Probes: The Most Interesting Part
探针:最有趣的部分
Probes constitute the core prompts leading to the identification and exploitation of vulnerabilities. Within Garak, all probes are centralized within the garak/garak/probes directory, enabling easy access and review directly within the tool interface.
探测是导致识别和利用漏洞的核心提示。在 Garak 中,所有探头都集中在 garak/garak/probes 目录中,可以直接在工具界面中轻松访问和查看。
A flag preceding the model name is utilized to specify the model for analysis.
模型名称前面的标志用于指定要分析的模型。
Probe Testing Template Guide
探针测试模板指南
Each probe is accompanied by a template, serving as a code framework delineating sample data for testing, author information, and the probe’s purpose. Ensuring that each probe is encapsulated within its own class is imperative, facilitating precise analysis of specific vectors during the testing phase.
每个探测器都附带一个模板,用作描述用于测试的示例数据、作者信息和探测器用途的代码框架。确保每个探针都封装在自己的类别中是必不可少的,这有助于在测试阶段对特定载体进行精确分析。
For example, one may specify -probes encoding
to conduct a comprehensive analysis across all available encodings. Alternatively, focusing on a singular encoding, such as -probes encoding.base64
, offers a more targeted approach. This flexibility caters to diverse testing scenarios, encompassing a spectrum of encoding-based attacks or Cross-Site Scripting (XSS) vulnerabilities.
例如,可以指定 -probes encoding
对所有可用的编码进行全面分析。或者,专注于单一编码(如 -probes encoding.base64
)提供了一种更有针对性的方法。这种灵活性适用于各种测试场景,包括一系列基于编码的攻击或跨站点脚本 (XSS) 漏洞。
The system architecture is engineered to support the seamless deployment of a myriad of probes, including those targeting encoding manipulations or furnishing XSS exploitation prompts. These probes play a pivotal role in empowering the model’s capacity to effectively simulate and analyze potential security threats.
系统架构旨在支持无数探测器的无缝部署,包括那些针对编码操作或提供 XSS 利用提示的探测器。这些探测器在增强模型有效模拟和分析潜在安全威胁的能力方面发挥着关键作用。
Here is an example of a test template that you can use in your tasks:
下面是可在任务中使用的测试模板示例:
And here’s an example of a completed one. The sample was created based on the WunderWuzzi study:
这是一个完整的例子。该样本是根据 WunderWuzzi 研究创建的:
Additionally, we can observe the presence of two additional methods.
此外,我们还可以观察到另外两种方法的存在。
-
_attempt_prestore_hook
This function adds a list of keywords to each model test attempt. These keywords are then used to check if the model’s responses contain any of those specific words.
此函数向每个模型测试尝试添加关键字列表。然后,这些关键字用于检查模型的响应是否包含任何这些特定单词。 -
init
This method initiates the process by creating prompts. It combines various domains and coding techniques into a standard boilerplate text, aimed at testing the model efficiently.
此方法通过创建提示来启动该过程。它将各种领域和编码技术组合到一个标准的样板文本中,旨在有效地测试模型。
Certainly, Garak encourages the addition of new prompts to the tool and even has a dedicated page on how to become a contributor. For more information, visit how to contribute.
当然,Garak 鼓励在工具中添加新的提示,甚至有一个关于如何成为贡献者的专用页面。有关更多信息,请访问如何贡献。
The output includes an HTML report that allows us to identify the model’s limitations.
输出包括一个 HTML 报告,允许我们识别模型的局限性。
Based on this report, we can observe that the model is vulnerable to Prompt Injection attacks, and we received a high resistance score of 74%. This indicates that the model still has vulnerabilities, but overall, it is well protected against basic attacks.
根据这份报告,我们可以观察到该模型容易受到提示注入攻击,我们获得了 74% 的高抗性分数。这表明该模型仍然存在漏洞,但总体而言,它对基本攻击有很好的保护。
In the next article, we will examine other tools for testing large language models.
在下一篇文章中,我们将研究用于测试大型语言模型的其他工具。